48 research outputs found

    On the merits of SVC-based HTTP adaptive streaming

    Get PDF
    HTTP Adaptive Streaming (HAS) is quickly becoming the dominant type of video streaming in Over-The-Top multimedia services. HAS content is temporally segmented and each segment is offered in different video qualities to the client. It enables a video client to dynamically adapt the consumed video quality to match with the capabilities of the network and/or the client's device. As such, the use of HAS allows a service provider to offer video streaming over heterogeneous networks and to heterogeneous devices. Traditionally, the H. 264/AVC video codec is used for encoding the HAS content: for each offered video quality, a separate AVC video file is encoded. Obviously, this leads to a considerable storage redundancy at the video server as each video is available in a multitude of qualities. The recent Scalable Video Codec (SVC) extension of H. 264/AVC allows encoding a video into different quality layers: by dowloading one or more additional layers, the video quality can be improved. While this leads to an immediate reduction of required storage at the video server, the impact of using SVC-based HAS on the network and perceived quality by the user are less obvious. In this article, we characterize the performance of AVC- and SVC-based HAS in terms of perceived video quality, network load and client characteristics, with the goal of identifying advantages and disadvantages of both options

    An autonomic delivery framework for HTTP adaptive streaming in multicast-enabled multimedia access networks

    Get PDF
    The consumption of multimedia services over HTTP-based delivery mechanisms has recently gained popularity due to their increased flexibility and reliability. Traditional broadcast TV channels are now offered over the Internet, in order to support Live TV for a broad range of consumer devices. Moreover, service providers can greatly benefit from offering external live content (e. g., YouTube, Hulu) in a managed way. Recently, HTTP Adaptive Streaming (HAS) techniques have been proposed in which video clients dynamically adapt their requested video quality level based on the current network and device state. Unlike linear TV, traditional HTTP- and HAS-based video streaming services depend on unicast sessions, leading to a network traffic load proportional to the number of multimedia consumers. In this paper we propose a novel HAS-based video delivery architecture, which features intelligent multicasting and caching in order to decrease the required bandwidth considerably in a Live TV scenario. Furthermore we discuss the autonomic selection of multicasted content to support Video on Demand (VoD) sessions. Experiments were conducted on a large scale and realistic emulation environment and compared with a traditional HAS-based media delivery setup using only unicast connections

    Shared content addressing protocol (SCAP): optimizing multimedia content distribution at the transport layer

    Get PDF
    In recent years, the networking community has put a significant research effort in identifying new ways to distribute content to multiple users in a better-than-unicast manner. Scalable delivery is more important now video is the dominant traffic type and further growth is expected. To make content distribution scalable, in-network optimization functions are needed such as caches. The established transport layer protocols are end-to-end and do not allow optimizing transport below the application layer, hence the popularity of overlay application layer solutions located in the network. In this paper, we introduce a novel transport protocol, the Shared Content Addressing Protocol (SCAP) that allows in-network intermediate elements to participate in optimizing the delivery process, using only the transport layer. SCAP runs on top of standard IP networks, and SCAP optimization functions can be plugged-in the network transparently as needed. As such, only transport protocol based intermediate functions need to be deployed in the network, and the applications can stay at the topological end points. We define and evaluate a prototype version of the SCAP protocol using both simulation and a prototype implementation of a transparent SCAP-only intermediate optimization function
    corecore